08-16-2016

LA-UR-16-26173

Development of Novel 3D Acoustic Borehole Integrity Monitoring System

EST.1943

Cristian Pantea¹, Eric S. Davis^{1,2}, Dipen N. Sinha¹, Craig Chavez¹, Vamshi Chillara¹, Yu Chen¹, Lianjie Huang¹, Barbara Kutchko³, Dustin Crandall³, Roger Chen⁴, Douglas A. Blankenship⁵, Jiann-Cherng Su⁵, Hector J. Santos-Villalobos⁶, Yarom Polsky⁶, Roger Kisner⁶

The Problem:

Defects/fracture detection beyond casing with high resolution. No current techniques.

* Picture from S.E. Gasda, Environ Geol (2004) 46: 707-720

We plan to extend applicability to: (1) casing-cement interface, (2) cement-formation interface, and (3) out in the formation (up to ~ 3 meters).

Comparison of existing techniques and the present approach

Method	Frequency (kHz)	Range (m)	Resolution (mm)
Standard borehole sonic probe, e.g. BARS (Borehole Acoustic Reflection Survey)	0.3-8	15	~ 300
Present approach	10-150	~ 3	~ 5
Ultrasonic probe, e.g. UBI (Ultrasonic Borehole Imager)	>250	casing	4-5

Slide 2

NISA

UNCLASSIFIED

The Proposed Solution:

Novel technique that fills this technology gap.

NISA

Relevance to the SubTER pillars:

Comprehensive solutions to wellbore integrity monitoring and improved near wellbore fracture detection are needed in multiple energy sectors (CO₂ Storage, Geothermal, Oil & Gas, Nuclear).

Wellbore Integrity

ty Subsurface Stress and Induced Seismicity

nd Permeability Manipulation New Subsurface Signals

- EST. 1943 -

Long-term objectives:

Develop a complete 3D imaging system, based on:

- unique acoustic source (low frequency, highly collimated, broadband: 10-150 kHz, high power)
- advanced image processing.

Investigate effectiveness of next generation wellbore completion technology such as foamed cements.

Slide 5

Outcome:

- improved imaging resolution around the borehole and
- extended investigation range beyond the wellbore casing

UNCLASSIFIED

- Multi-lab project:
 - Develop acoustic source and imaging system (LANL)
 - \rightarrow Develop imaging system and perform experiments for defects detection
 - Explore different *image processing* approaches (LANL + ORNL).
 - \rightarrow The best choice (or complementary use) will be selected for future experiments
 - Perform experiments in more realistic boreholes (LANL + SNL)
 - \rightarrow Incorporate data from realistic borehole and compare resolution with lab experiments

Slide 6

- Investigate acoustic metrics for *foamed cements* (LANL + NETL).
 - \rightarrow Incorporate new metrics for wellbores in the field

UNCLASSIFIED

Scientific/Technical Approach

Schematic representation of the 3D imaging system:

Project Milestones

Milestone Summary Table									
Task No.	Task Title	Milestone Type (Milestone or Go/No-Go)	Milestone No.	Milestone Description	Milestone Verification Process (Who, What, When, Where)	Anticipated Date of Completion			
1	Build apparatus								
2	Defects imaging	Milestone	1 2	Demonstrate imaging capability for casing imperfections. Demonstrate imaging capability for delaminations and cement cracks	Thinning Metal loss Eccentricity Delamination Fractures in cement * w/ sub-cm resolution	09/30/2016 09/30/2016			
3	Resolution determination								
4	LANL Image processing	Milestone	3	Demonstrate improved resolution	Achieve resolution similar to existing ultrasonic tools (in the order of a few millimeters)	09/30/2016			
5	ORNL Image processing	Milestone	3	Demonstrate improved resolution	Achieve resolution similar to existing ultrasonic tools (in the order of a few millimeters)	09/30/2016			
6	Foamed cements tests	GO/NO G	D: A go/no go	o decision will b	be based on the capabilit	ty to image the			
7	Realistic wellbores	casing-ce in the field	ment interfac d.	ce with a realist	ically required resolution	n for applications			

UNCLASSIFIED

Slide 8

nos

a NATIONAL LABORATORY

EST. 1943

CT Imaging of Well

- First CT scans acquired of well/cement/rock system in early 2016
 - Well thickness varied to ensure minimal imaging artifacts during scanning. Scan resolution 27.8 micron.
 - Multiple voids/fractures created in cement during process to test ability to capture imperfections in cement 2 inch

Elastic Properties of Foamed Cement

- Ultrasonic testing of Foamed Cement cylinder specimens with size approximately 25 mm (diameter) x 110 mm.
- Equivalent Age was calculated using the Arrhenius equation with an Activation Energy of 35,418 J/mol.

Case (Foam Quality) 0% 10% 20% 30% 3371.5 3060.4 2877.6 2661.8 P-Wave Velocity⁺ $(m/_{e})$ Mass Density⁺ (^{kg}/_{m3}) 2120.9 1853.2 1650.3 1468.4 Poisson's Ratio^{*} 0.18 0.18 0.19 0.2 Young's Modulus (GPa) 22.2 15.48 11.9 8.8

LANL got similar values.

anake

Poisson ratio was determined to be ~0.25, using both longitudinal and shear propagation modes.

Large change in elastic moduli with air content \rightarrow significant softening

National Energy

Technology Laboratory

+ measured, *assumed P-Wave Velocity vs. Equivalent Age

Scientific/Technical Approach **Acoustic Source**

 $\Delta f = 83 \text{ kHz}$

Parametric Acoustic Source:

- Low frequency (10-150 kHz)
- Large bandwidth (140 kHz)
- Frequency-independent beam width
- No side lobes

Ο

- Beam divergence < 6 degrees
- **Bessel-like Acoustic Source:** \cap
 - Low frequency (10-150 kHz)
 - Large bandwidth (140 kHz)
 - Limited diffraction during propagation
 - Reduced side lobes

Compact Parametric Acoustic Source: Ο

- Very compact source; can be fitted in boreholes 1-2 in ID
- IP process underway

120

X-axis (mm)

transmitter in H₂O

- 83kHzDiff 65kHzDiff - 37kHzDiff

FWHM ~ 50 mr

UNCLASSIFIED

Slide 11

Scientific/Technical Approach Measurement system

Simulated borehole: metal casing embedded in cement.

Electronics

Acoustic source

Scientific/Technical Approach Beam pattern through concrete

Experimental setup for beam pattern determination after propagation through concrete

Scientific/Technical Approach Imaging with parametric source

Open borehole configuration (Plexiglas-lined cement barrel) Reflection seismology – Common azimuth representation

Excitation: 10-150 kHz Gaussian pulse Azimuthal data collected every 5 deg, for a 180 deg span.

Groove location

Cement OD: 477 mm Cement ID:152 mm Plexiglas pipe ID: 146 mm Plexiglas pipe thickness: 3 mm Groove depth: 50 mm

Slide 14

Scientific/Technical Approach LANL image processing

Open borehole configuration (Plexiglas-lined cement barrel) Least-squares reverse-time migration

Excitation: 10-150 kHz Gaussian pulse Azimuthal data collected every 5 deg, for a 180 deg span.

Open borehole configuration (Plexiglas-lined cement barrel) Reflection seismology – Common azimuth representation

Open borehole configuration (Plexiglas-lined cement barrel) Reflection seismology – Common azimuth representation

Open borehole configuration (Plexiglas-lined cement barrel) Reflection seismology – Common azimuth representation

Open borehole configuration (Plexiglas-lined cement barrel) Reflection seismology – Common azimuth representation

Scientific/Technical Approach Defects detection – Bessel-like Source

Cement OD: 460 mm

Cased borehole configuration (Steel-lined cement barrel) Reflection seismology – Common receiver representation

Scientific/Technical Approach Defects detection – Bessel-like Source

Steel casing barrel – Bessel-like Source

Scientific/Technical Approach Resolution determination

Steel casing barrel – Parametric Source

Scientific/Technical Approach Resolution determination

Scientific/Technical Approach Granite Block Samples – Sandia National Laboratory

Rock sample in drilling facility

34" NOMINAL

CEMENT ANNULUS

Targeted Casing Defects:

- Wall thinning
 - Pre-machine thin section in casing prior to cementing
- Casing eccentricity
 - Offset casing with jig during cementing
- Channeling
 - Removable insert
- Delamination
 - Thin-layer Silicone insert

Quartered Granite block UNCLASSIFIED

4" ID

4 holes: 6" dia x ~40.5" deep

Slide 24

Summary

- Built and experimentally validated three different acoustic sources that provide a collimated beam of low frequency.
- Beam collimation is maintained after passing trough an inhomogeneous scattering medium (concrete barrel).
- Gained insight in understanding foamed cements, by determining elastic properties and performing CT scans.
- Demonstrated imaging capabilities of the system, in both open- and cased-borehole, for different induced defects (groove, detachment, fluid-filled pocket, casing).
- Determined a depth resolution as low as 3 mm, with an azimuthal resolution better than 5 degrees.
- Long-term plan: refine and enhance the capabilities of the 3D imaging system for more realistic environments, and extended investigation range beyond the wellbore casing.

UNCLASSIFIED

